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Design space exploration (DSE) provides intelligent methods to tune the large number of optimization pa-

rameters present in modern FPGA high-level synthesis tools. High-level synthesis parameter tuning is a

time-consuming process due to lengthy hardware compilation times—synthesizing an FPGA design can take

tens of hours. DSE helps find an optimal solution faster than brute-force methods without relying on designer

intuition to achieve high-quality results. Sherlock is a DSE framework that can handle multiple conflicting

optimization objectives and aggressively focuses on finding Pareto-optimal solutions. Sherlock integrates a

model selection process to choose the regression model that helps reach the optimal solution faster. Sherlock

designs a strategy based around the multi-armed bandit problem, opting to balance exploration and exploita-

tion based on the learned and expected results. Sherlock can decrease the importance of models that do not

provide correct estimates, reaching the optimal design faster. Sherlock is capable of tailoring its choice of

regression models to the problem at hand, leading to a model that best reflects the application design space.

We have tested the framework on a large dataset of FPGA design problems and found that Sherlock converges

toward the set of optimal designs faster than similar frameworks.
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1 INTRODUCTION

Optimizing a high-level synthesis (HLS) design involves a lengthy process of refactoring
the code and tuning directives. An HLS designer can modify the amount of exploitable par-
allelism, pipelining, memory structure, and data types to balance the design’s throughput, re-
source utilization, power consumption, and other relevant optimization objectives. Any design
change can result in a drastic modification of the underlying hardware architecture, which
forces the designer to perform time-consuming synthesis runs to obtain accurate estimates of
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throughput, resource usage, and power. One synthesis run can easily take multiple to tens of
hours.

HLS tools provide many directives, resulting in a large design space that must be explored intel-
ligently. These directives create a highly complex design space that is often non-linear [7, 17] and
generally contains mutually exclusive objectives (e.g., resource usage vs. throughput). Therefore,
it is crucial for the designer to find the set of optimal designs along all the objectives. In a context
where compiling and/or running each design takes a long time, evaluating all possible designs is
infeasible, and thus the designer is forced to selectively sample the design space to find the best
results.

Sherlock is a design space exploration (DSE) framework that uses active learning to evaluate
and intelligently explore the HLS design space. Sherlock can quickly reach the set of Pareto-optimal
designs by minimizing the initialization size, and performing a sample selection entirely driven by
the estimated optimal set, using a strategy that balances exploration and exploitation based on an
underlying design space surrogate model.

Sherlock’s active learning process is based on a regression model that iteratively provides de-
sign space estimates. We tested Sherlock using multiple types of regression models, spanning from
complex models often used in active learning literature to simpler consensus-based interpolation
kernels that help to reach an almost optimal solution faster. To make Sherlock more flexible and
adaptable, we create a model selection strategy based on the multi-armed bandit (MAB) prob-
lem that rewards the models directly improving the actual Pareto front. With this strategy, the
framework can quickly decrease the importance of models that do not provide correct estimates.
It can then leverage all models relative to their positive contribution to reach the optimal designs
faster.

Sherlock uses several unique features in its DSE process. First, Sherlock focuses on accurately
modeling only the designs on or near the Pareto front. This reduces the problem size complexity,
focuses the DSE, and generally allows the exploration to converge quickly. Second, our results
show that a one-size-fits-all approach to design space modeling is not effective; HLS design spaces
are unique, and thus they cannot all be accurately modeled using a single surrogate model. Sher-
lock adaptively selects from different surrogate models (Gaussian process, random forest, radial

basis functions (RBFs)) to determine the one that most accurately reflects the design space un-
der consideration. Finally, Sherlock balances between exploration and exploitation in selecting its
samples to evaluate. Exploration aims to maximize the uncertainty of the model while exploita-
tion samples points that are most likely to be Pareto optimal. Our results show that this sampling
process plays an important role in DSE.

This article describes the Sherlock DSE framework. The major contributions are as follows:

• We show that the design space model plays an important role in DSE. Sherlock uses a model
selection strategy to adapt it to a wide variety of design spaces.
• Sherlock uses an adaptive exploit versus explore sample selection strategy. We show that

this strategy is effective in quickly converging to the Pareto front.
• We compare Sherlock to other DSE tools and determine that Sherlock generally outperforms

those tools for FPGA HLS DSE.
• We release Sherlock as open source (https://git.io/JKuFz).

Section 2 introduces the problem and notations, describes Sherlock’s core active learning
algorithm, and presents the method to select regression models. Section 3 contains the results
of running Sherlock against multiple FPGA benchmarks that cover a wide variety of applications.
We discuss related work in Section 4 and conclude in Section 5.
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2 SHERLOCK

Sherlock is a DSE strategy that uses active learning to iteratively improve the known set of optimal
designs, and it relies upon a surrogate model to estimate the design space. Sherlock allows for
different models and provides a model selection techniques that can automatically select between
the available models to best match the underlying design space.

This section starts by defining the DSE problem and introducing formal definitions. Then, it
provides details about the Sherlock algorithm. This includes the ability to use different surrogate
models to model the underlying design space.

2.1 Scope and Definitions

A design space1 is composed of both an input space and an output space. The input space is a
set of FPGA HLS designs that met the application’s functional requirements. The differences in
the designs can be described through the definition of different design parameters, also known in
the DSE literature as knobs. In FPGA HLS DSE, knobs are related to loop unrolling factors, pipeline
initiation intervals, the number of work items/work groups, and so forth. The output space is de-
fined by the optimization objectives set by the designer of the application. The major objectives
for FPGA HLS DSE relate to throughput and resource utilization. Evaluating a design sample to
obtain these objectives requires fully synthesizing and implementing HLS designs to a bitstream,
integrating them into a larger system, and evaluating them using a dataset representative of the
target application [7, 23]. These results form the output space, represented by a matrix y of dimen-
sions (m × o), where o is the number of objectives. Each row of y is a fully resolved sample of the
FPGA HLS design with specified input space knobs.

More formally stated, the input space X is defined as X = {k1 × k2 × · · · × kn } ∈ Xm×n , where
ki is a knob vector containing all the possible values for this knob, and in this case, X = R. The
resulting matrix has n columns for each knob, andm rows for each unique and valid combination
of knob values (i.e.,m design candidates). Knobs take n values, for n ∈ [2,∞]. They can be discrete,
categorical, or continuous. Continuous knobs can generally be discretized by knowing the bounds
of the knob and choosing a reasonable set of values based on the target platform (powers of 2,
regular grid, etc.). Categorical knobs are interpreted as numerical values. The output space y ∈
Ym×o is a matrix ofm rows for each design candidate ando columns for each optimization objective.
The final design space S is the combination of the input and output space: S = {(Xi ,yi )}.

DSE aims to find the set P ⊆ S of design candidates that are optimal on at least one objective.
As a multi-objective optimization problem, this set P corresponds to the set of Pareto-optimal
designs—that is, designs that cannot be improved on one objective without decreasing another,
also known as the Pareto front. Since evaluating a design candidate is a time-consuming process,
DSE should determine the designs on the Pareto front while sampling as few points as possible.

Figure 1 provides an example of a design space. The input space consists of five knobs (n = 5),
and the output spaces has two objectives (o = 2). There are 10 designs (m = 10), each corresponding
to a unique knob vector. The knob settings here are discretized to powers of 2. The graph on the
right depicts the output space. In this case, we aim to maximize both the objectives, and thus the
Pareto front consists of designs toward the upper right area of the output space.

A key element of DSE is estimating the function f : R
m → R

o such that

y = f (X ).

1A design space is the combination of an input space and an output space, although the designation is often informally

used to refer to either the input space or, output space, or both.
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Fig. 1. Representation of a design space S . The example input space X consists ofm design candidates, each

with n = 5 knob values. The output space y is a set of o = 2 objectives where larger is better. Graphing the

output space shows the Pareto front P , which are the solutions that are optimal w.r.t. at least one objective.

We assume that f can potentially be non-linear and thus would require a large number of samples
to be estimated. Furthermore, since the rows of y generally come from measurements (running
time, accuracy, etc.), the output space may not be deterministic. For example, multiple runs of an
application would lead to different throughput depending on the system state. Thus, a high-quality
DSE tool needs to be robust to noise in order to build a stable model of f .

Since the goal of DSE is to find the Pareto front P , it is not strictly necessary for the DSE frame-
work to accurately model the entire design space S ; it only needs to understand the design space
around the Pareto front. This is especially important in scenarios where sampling the output space
is expensive.

DSE outputs an estimated Pareto front P̂ . To understand the quality of the estimated Pareto front,
a metric is needed to compare the estimated Pareto designs with the actual Pareto front. Average

Distance to Reference Set (ADRS) [19] measures the average normalized distance between

the estimated Pareto front P̂ and the actual Pareto front P (i.e., the reference). ADRS computes
the distance from every estimated Pareto design to the closest point on the actual Pareto front.
An ADRS equal to 0 indicates that every estimated Pareto point is on the actual Pareto front. An
increasing ADRS indicates that the estimated Pareto front is moving away from the actual Pareto
front. Thus, ADRS is commonly used to compare estimated Pareto fronts where smaller is better.

2.2 Base Algorithm

Sherlock uses active learning [27] to find the Pareto-optimal designs. Active learning is a subfield
of machine learning that aims to intelligently sample and better model a problem with limited
labels. Active learning techniques target scenarios where one can pose only a limited number of
queries. Thus, they must carefully consider which designs to sample and learn from the results.
For HLS DSE, the queries are the HLS candidate designs and the resulting labels are objective
metrics of the final implementation of that HLS design (e.g., resource usage and throughput). A
query of the design space involves time-consuming synthesis compilations, implementation on an
FPGA system, and evaluation of the system using real data. This can easily take hours and often
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Fig. 2. Sherlock uses an active learning approach that iteratively selects designs to sample while balancing

exploitation and exploration of the surrogate model.

ALGORITHM 1: Sherlock Static Model Algorithm

Input :X
s1, s2 = TED (X )
K = {s1, s2}
mode← “explore”

prevscore = −∞
while |K | < sample budget do

f̂ ← д(.;K )

ŷ,H ← f̂ (X )

P̂ ,H
P̂
← pareto(ŷ,H )

curscore← max
s ∈P̂

(scores(ŷ))

if curscore < prevscore then
mode← next(mode)

end

if mode = “explore” then
i ← argmax(H

P̂
)

else if mode = “exploit” then
i ← argmaxsi ∈S\K (scores(ŷ))

end

K ← K ∪ {si }
prevscore← curscore

end

overnight or even longer for the largest designs. Thus, the number of queries should be minimized
since it involves a series of time-intensive operations.

Sherlock works iteratively by (1) creating a surrogate model of the design space to formulate a
hypothesis of the Pareto-optimal designs, (2) selecting the next candidate to sample, (3) sampling
the chosen design to obtain objective values, and (4) refining the model based on the new sample.
The loop continues until a stopping criterion is met. The specifics of Sherlock’s active learning
workflow are summarized in Figure 2, and pseudocode is presented in Algorithm 1.

ACM Transactions on Design Automation of Electronic Systems, Vol. 27, No. 4, Article 33. Pub. date: March 2022.
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The goal of Sherlock is to exploit a surrogate design space model to find the Pareto-optimal
designs as quickly as possible. In other words, Sherlock aims to improve the Pareto front of known
designs at each iteration. However, if the surrogate model is not accurate, Sherlock should opt to
explore the design space by sampling the design with the most uncertainty with the hopes that it
will lead to a better surrogate model. Furthermore, Sherlock aims to learn the best surrogate design
space model for the given design space. Finally, Sherlock focuses its exploration on designs at or
around the estimated Pareto front in an attempt to keep the sampling process in an optimal space.

2.2.1 Initialization. As a starting point of the algorithm, we choose an initial number of samples
to evaluate and collect their objective values. We build a set K of known designs (for which yi is
known) that will grow with future iterations.

K = {(X1,y1), (X2,y2), ...} (1)

Before the initial sampling, we do not possess any information on the output space, and therefore
the sample selection must occur based on the input space only. Sherlock uses the transductive

experimental design (TED) [34] algorithm to provide a representative set of samples. TED in-
telligently selects the initial sampling space K such that the sampled designs are hard to predict
while remaining representative of the entire input space. TED is only used for the initial sampling.
After that, Sherlock decides on the next samples to select based on an exploit/explore strategy that
is detailed in the following. Our experiments set K = 5.

2.2.2 Formulation of the Pareto Hypothesis. The goal of Sherlock is to focus the learning method
on the Pareto front of the design space. The intuition is that it is important to accurately assess
the Pareto designs. Likewise, it is less important to accurately model non-Pareto points, especially
those that are far from optimal.

Sherlock estimates the Pareto front through the use of a surrogate model. A surrogate model is

defined as a function f̂ :

f̂ ← д(K ), (2)

д : S → (X→ Y), (3)

where д is a supervised learning method for regression. We use the surrogate model to provide an
estimate of the entire output space:

ŷ,H ← f̂ (X ), (4)

where ŷ is the estimated output space and H is the uncertainty of each estimation. Sherlock then
extracts the estimated Pareto designs using that surrogate model. More precisely, Sherlock calcu-

lates the estimated Pareto front P̂ from the estimated output space ŷ along with a measure of the
uncertainty of the Pareto front estimate H

P̂
:

P̂ ,H
P̂
← pareto(ŷ,H ), (5)

where pareto is a function to extract the set of Pareto-optimal designs.

2.2.3 Sample Selection. Sampling is the process of choosing one design si to evaluate and obtain
its output value. The result is an increased set of known designs:

K ← K ∪ {si }. (6)

Sherlock must decide at every iteration the index i of the next candidate design to sample. Sherlock
focuses on sampling designs on the Pareto front. To reach these designs, the algorithm has two
options: increase the understanding of the design space near the Pareto front (explore) or directly
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ALGORITHM 2: Score Algorithm

Input :ŷ
Output : Scores: array of sizem
for j ∈ [1..o] do

Sum[j] =
∑

i ŷ[i, j]
end

for i ∈ [1..m] do
Scores[i] =

∑
j (ŷ[i, j] ∗m − Sum[j])

end

sample a design on the estimated Pareto front (exploit). The explore sampling mode chooses the
Pareto design that has been estimated by the surrogate model with the highest uncertainty:

i ← argmax(H
P̂

). (7)

This mode increases the confidence of the estimated Pareto front. The exploit mode selects the
design from those that have not already been sampled with the largest estimated Pareto dominance
(scores):

i ← argmax
si ∈S\K

(scores(ŷ)). (8)

When the surrogate model has a good estimate of the space around the Pareto front, this step leads
to picking a more optimal design.

Sherlock opts to switch between explore/exploit modes when the maximum score of current
estimated Pareto designs, as calculated by Algorithm 2, is less than the previous maximum score.
Any decrease of maximum score results in a mode change to counteract the decreasing score and
thus the decrease in estimation quality.

Algorithm 2 describes the score function. It compares the output value of each design (scaled
by the number of designs) against the sum of the output of all other designs. Recall that o is the
number of optimization directives and m is the number of design candidates. The first for loop
calculates the sum of each output optimization objective across all of the design candidates. This
is used like an average of all the optimization values. The second for loop calculates a score for
each design candidate. The score is a summation of how much each of that design candidate’s
objectives compare to the average value of that objective (stored in Sum[]). As Sum[] represents
the average objective value scaled bym, Scores[] represents the distance from the average, scaled
by m. A large score indicates that the design candidate’s objectives are much greater than the
average value of those objectives. Thus, a large score indicates that that candidate is located far
away from the center of mass of the hypervolume and is thus a high-quality design that is likely
to be on or near the Pareto front. A negative score indicates that the design candidate’s objectives
are generally worse than the average value of the objectives and thus a poor design candidate.

Sherlock chooses between the two sampling modes based on the improvement of the predicted
Pareto front. To measure the improvement, Sherlock generates a score for the prediction from a
surrogate model and monitors its changes. When in exploit mode, Sherlock applies the scores func-
tion to design candidates on the estimated Pareto front that have not been already been sampled
(i.e., those not in K ) and picks the design candidate from that set to sample. On each iteration,
Sherlock compares the current maximum score for all designs on the estimated Pareto front to
the maximum score from the previous iteration. If the score is decreasing, Sherlock switches the
sampling mode between explore and exploit.
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Fig. 3. Illustration of the difference of performance using Sherlock with two regression models on two bench-

marks. The left graph shows that the random forest better models the DCT design space, whereas the Gauss-

ian process is best for the histogram design space (right graph).

2.3 Surrogate Model

Sherlock can use any surrogate model based on a regression algorithm that provides a predic-
tion uncertainty. There exist two major methods to provide an uncertainty in a regression model:
the ensemble technique and Bayesian learning.

Ensemble techniques create multiple regression models, each with a subset of the known points.
The predictions of different models are aggregated by voting or averaging. The uncertainty of
predictions can be estimated by computing the variance over all the models. A popular ensemble
model is the random forest predictor based on a set of decision trees, and it is used in several active
learning frameworks.

Bayesian learning techniques leverage Bayes’ theorem to progressively update statistical distri-
butions based on provided evidence. Typically, a regression model starts with a prior distribution
over its weights and combines it with the likelihood from known points to create a posterior
distribution. The parameters of the posterior distribution can be used to compute a measure of
uncertainty. A popular example is Gaussian process models that create a prior distribution over
functions by using a kernel to express the correlation between points.

Sherlock can use any of these types of learning algorithms. We experiment with random forest
and the Gaussian process because they can generally model complex design spaces, and we also
create a consensus-based RBF interpolator, which provides kernel-based interpolation of unknown
data and is faster to compute than a Gaussian process.

Most design spaces are inherently different, as they represent a wide variety of relationships
between input variable and output design goals. Some design spaces can be modeled by a simple
linear equation, whereas others require a more complex model. This is reflected by the performance
of different surrogate models in active learning frameworks.

Figure 3 presents the results of running Sherlock on two different benchmarks (DCT and His-
togram) using two different surrogate models. We plot ADRS against the percentage of design
space sampled. Intuitively, as more designs are sampled, Sherlock does a better job of estimating
the Pareto front (i.e., the ADRS moves toward 0). A lower ADRS indicates a better Pareto front
estimate; an ADRS = 0 corresponds to perfectly estimating the Pareto front. In the DCT design
space, a random forest surrogate model causes DSE to converge toward the Pareto front faster. In
the histogram design space, a Gaussian process model makes DSE converge faster. The major point
that we want to emphasize is that that different models perform better on different benchmarks.
A random forest better models the DCT design space, whereas a Gaussian process is best for the
histogram design space.

A common solution to pick a model is to test the algorithm on similar design spaces, and choose
the most efficient one, possibly by cross validation. Instead, we propose to learn the best model
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Fig. 4. Illustration of varying parameters for beta distribution PDFs. The left graph shows α being varied

while β is held constant. The right graph shows α held constant and β varied. Increasing α makes a model

to be more likely selected in the future, whereas increasing β makes it less likely to be selected.

using an MAB strategy that iteratively updates the importance of each model based on the Pareto
set improvement.

2.4 Surrogate Model Selection Algorithm

At each iteration of the active learning process, we want to choose a surrogate model д among a
pool of modelsG = {д1,д2, ...}. We start with no prior knowledge of which model performs better,
and we want Sherlock to iteratively increase its reliance on models that generate good results.

Sherlock selects the surrogate model using an MAB strategy [28]. The MAB problem is a
Bayesian optimization problem where we wish to determine the distribution of independent vari-
ables with unknown outcomes (the bandits), and choose the variable providing the best outcome.
The various MAB algorithms provide a tradeoff between exploitation (observing the bandit with
the best-known outcome) and exploration (observing other bandits to refine their distribution) [3].

In this case, we consider each model as a bandit. The outcome of observing one bandit is either
an improvement in the current Pareto set or no improvement. In other words, we are trying to
learn a Bernoulli distribution for each model. Consequently, we can select the prior distribution of
the bandits as a beta distribution. We define the prior distribution with parameter θ for each model
i as Pi (θ ) = Beta(αi , βi ). We update these distributions by selecting one bandit and observing the
outcome. A good choice of sampling algorithm is Thompson sampling [29], which provides a good
tradeoff between exploration and exploitation [4]. The algorithm draws a random sample from

each distribution, θ̂i ∼ Beta(αi , βi ) ∀i , then chooses the bandit with the largest sample value. The
observation x of the selected bandit corresponds to the improvement of hypervolume over the
known designs (hypervolume(K )), after we sample a design according to a strategy as defined in
Section 2.2.3. In other words, if the model дi improved the Pareto set, x is a positive outcome (i.e.,
x = 1) and otherwise x = 0. A value of x > 0 increases αi , whereas a value of x = 0 increases the
value of βi . As can be seen in Figure 4, by increasing αi and holding βi constant, the likelihood that
the distribution provides a larger value (closer to 1) is increased. Likewise, increasing βi makes is
more likely that smaller sample value will be selected (closer to 0). We use this updated function
to compute the posterior distribution based on the outcome and use it as prior for the next
iteration.

Algorithm 3 shows the details of the method and how it integrates with the Sherlock algorithm
described in Algorithm 1. Note that we use an optional posterior reshaping factor r that changes
the variance of the distributions. As a result, increasing the value of r favors exploitation over
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ALGORITHM 3: Sherlock Model Selection Algorithm

Input :X , Models {д1,д2, . . . ,дi , . . .}, Reshape factor r = 1

s1, s2 = TED (X )
K = {s1, s2}
mode← “explore”

prevscore = −∞
Initialize: αi = 1, βi = 1 ∀i
while |K | < sample budget do

Pi (θ ) = Beta(αi , βi ) ∀i
θ̂i ∼ Beta(αi , βi ) ∀i
i = argmax(θ̂i )
Choose model д = дi

f̂ ← д(.;K )

ŷ,H ← f̂ (X )

P̂ ,H
P̂
← pareto(ŷ,H )

curscore← max
s ∈P̂

(scores(ŷ))

if curscore < prevscore then
mode← next(mode)

end

if mode = “explore” then
i ← argmax(H

P̂
)

else if mode = “exploit” then
i ← argmaxsi ∈S\K (scores(ŷ))

end

K ← K ∪ {si }
prevscore← curscore

Compute Hv = hypervolume(K )
x = Hv > prev(Hv )
αi = αi + x ∗ r
βi = βi + (1 − x ) ∗ r

end

exploration (i.e., the model providing the best outcome gets selected more often), and the policy
becomes more greedy. Increasing this value also has the side benefit that each positive outcome is
given more consideration, and potential improvements from models later in the sampling process
will re-adjust their importance faster. It provides a small chance to switch the most important
model during the sampling process.

A model selection algorithm is valuable when the design space model changes and our past
research demonstrated substantial differences between HLS FPGA design space algorithms [7].
Thus, the next question is whether Sherlock is capable of learning the best model. We generate
two synthetic design spaces optimized for different regression models (random forest and Gaussian
process), and we run the model selection process to verify that the algorithm can choose the proper
model for each design space. The ADRS curves in Figure 5 compare the results of Sherlock using
a single model and using model selection. In both datasets, model selection performs as well as
the best model, or better. On the bottom, we also plot the calculated mean of the beta distribution
associated with each model when running model selection. As expected, the model performing
better keeps a larger mean. The spikes in the curve correspond to the reshaping factor (set to
10) designed to amplify the increase of the mean when a model performs better only later in the
sampling process.
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Fig. 5. Performance of the model selection algorithm on two simulated datasets. On top are the ADRS curves,

and on the bottom are the calculated means of the beta distributions.

3 RESULTS

3.1 Experimental Setup

We implement Sherlock using Python 3 with the NumPy and SciPy libraries. We implement four
types of surrogate models: a Gaussian process with a Matern kernel using the GPy library, a ran-
dom forest from the scikit-learn library, and RBF interpolation algorithms with a consensus deci-
sion, with both a multiquadric basis and a thin plate basis. We compute an error metric based on
the ground truth design spaces using the ADRS metric [19]. ADRS measures the average normal-
ized distance between the estimated Pareto front and the reference Pareto front. The closer it is to
0, the better the estimation is. We are interested in the evolution of the ADRS value in function of
the number of samples. For a better comparison between benchmarks, we normalize the number
of samples to the size of the design space and report the results in function of the percentage of
the space sampled. The goal of Sherlock is to produce a curve that converges to zero as fast as
possible. To summarize our results, we compute the area under the curve (AUC) for a section
of the curve (up to 30% of the space sampled) as a measure of how fast the algorithm converges
toward a good solution.

We compare our results to the ATNE algorithm [13] implemented in Python 3, the ϵ-PAL [37]
algorithm implemented in MATLAB, TED [34] implemented in Python 3, and the Flash [16]
algorithm implemented in Python 2. The ATNE implementation leverages one of the following
models: a decision tree, random forest, or RBF with a multiquadric or thin plate basis. TED only
considers the input space and does not use an iterative approach. We ask TED for a certain
percentage of designs to sample and increase this number to explore the design space. For all
other iterative algorithms, we set the number of initial samples to 5. In ATNE, we monitor the
ADRS for each design sampled until it converges and stops. For ϵ-PAL, we set the ϵ to 0, monitor
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the ADRS curve for each sample, and complete the curve with the samples from the estimated
Pareto set after the algorithm converges. All non-deterministic algorithms are run multiple times
on each benchmark, and we compute the average ADRS curve.

3.2 Dataset

We test our algorithm on a set of FPGA benchmarks that cover different types of applications.
These benchmarks are FPGA applications outfitted with knobs that can be tuned, along with a test
dataset to run them and measure their throughput. The knobs are software-defined parameters
that translate into architecture changes. They cover typical FPGA optimizations such as pipelining,
unrolling, partitioning, and some optimizations specific to each application (sliding window width,
etc.). The different combinations of values for knobs create unique designs that are functionally
equivalent but produce a different outcome in terms of logic utilization and throughput.

The majority of our dataset consists of the Spector benchmarks [7]. The Spector benchmarks are
compiled using the Altera OpenCL SDK. Each design takes multiple hours to compile, making DSE
essential. In total, all of the Spector benchmarks required more than 20,000 hours of compilation
time. All designs of these applications have been compiled and executed on a Terasic DE5 board
with a Stratix V FPGA to create design spaces containing between 200 and 1,500 designs each.
We also add the Iterative Closest Point (ICP) algorithm from our earlier work [8] that is imple-
mented on FPGA using OpenCL and uses knobs to create a similar design space as in Spector, with
1,276 designs. We use these provided design spaces that consist of the knob values, the actual FPGA
area utilization, and the measured throughput of each design. Please consult the Spector repository
and technical paper for more information [7].

The goal of a DSE framework is to search a predefined space for optimal designs. Therefore, our
ground truth consists of the set of Pareto-optimal designs in each design space. We run Sherlock
by considering that the outcome of each design is unknown and let the tool incrementally find and
improve an estimated Pareto set. We can then compute the ADRS metric between the estimated
Pareto set and the ground truth set that we defined initially.

3.3 Results

The first experiment aims to understand the effect of different surrogate models. We do this by com-
paring the results of Sherlock using four different regression models. We show that the regression
model has a large role in the quality of results. Additionally, the experiment aims to understand
how the general Sherlock technique compares to different styles of DSE techniques (specifically
ATNE, ϵ-PAL, TED, and Flash).

Figure 6 presents the ADRS curve for ATNE with the four models: ϵ-PAL, TED, Flash, four ver-
sions of Sherlock with statically defined surrogate models, and Sherlock with model selection. The
experiment varies the percentage of designs that are sampled shown on the x-axis. We calculate
the average ADRS value across all benchmarks at each sample. The ADRS is calculated against
the ground truth design spaces that were evaluated and provided for each of the benchmarks. In-
tuitively, the ADRS should decrease as the number of sampled designs increases.

We run Sherlock with four different regression models: Gaussian process, random forest, RBF
(multiquadric), and RBF (thin plate) as well as model selection. The results focus on the first 30%
of the design spaces; 30% is a large budget for most applications with a slow evaluation time, and
in our test cases, it is always sufficient to reach an ADRS below 1% with the best regression model.

Figure 6 indicates that ϵ-PAL is generally inferior to all of the techniques. TED has slightly better
but still overall poor results. ATNE performs poorly when the sampled design space is smaller
(less than 10%) but improves as the number of samples increases. Sherlock using a static random
forest model is the worst-performing version of Sherlock followed by Sherlock Gaussian process.
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Fig. 6. Average performance of several algorithms on all FPGA benchmarks. We plot the error (ADRS—lower

is better) against the percentage of design space sampled. We test Sherlock and ATNE with multiple regres-

sion models.

The two versions of Sherlock using the RBF model perform the best out of all of the techniques.
Model selection appears to generally follow the RBF model, providing most of the benefit of RBF
without needing to commit to a single model. Comparing ATNE with RBF and Sherlock with RBF,
it is clear to tell that RBF does generally model the data better, but it does not account for all of
the improvement provided by Sherlock over ATNE. Figure 6 shows that, regardless of the model,
Sherlock performs better or similar to other algorithms in the first 5% of the spaces. After that,
Sherlock performs differently based on the chosen model. On average, using the RBF interpolator
with a thin plate kernel provides the best average ADRS.

However, the average ADRS curves do not entirely reflect the performance on individual bench-
marks and is especially skewed by the FIR benchmark, which is more difficult for several versions
of Sherlock due to some local minima. Thus, although it is tempting to just set Sherlock to always
use the RBF thin plate surrogate model, our later results indicate that different models better esti-
mate different design spaces. This motivates the benefits for tailoring the model toward the design
space as Sherlock does with its model selection algorithm (Algorithm 3).

To better understand the results across benchmarks, we use the AUC over the first 30% of the
design space sampled as a measure of the quality of a particular DSE algorithm on each individual
benchmark. The AUC metric calculates the area of a given ADRS curve, which provides a measure
of the convergence of an ADRS curve. This metric puts more weight at the beginning of the curve,
where we expect the error to decrease quickly.

Figure 7 shows the AUC for ϵ-PAL, ATNE with four models, Flash, TED, and five versions of
Sherlock for each benchmark. As before, we show Sherlock using four fixed models and add the
results of Sherlock using model selection. The results indicate that the model plays a large role
in the quality of the results. For example, Sherlock using a Gaussian process has a substantially
lower AUC than all of the other techniques in the BFS sparse design space, whereas Sherlock using
a random forest model provides the best results for DCT. Histogram is best using Sherlock RBF
multiquadric. Sherlock RBF thin plate is not the best in any individual benchmark but generally
performs well across the benchmarks as indicated in Figure 6. Thus, the model clearly plays an
important role in obtaining the best results. Furthermore, one model does not clearly dominate in
terms of consistently providing the best result across all applications.

Sherlocks’s model selection algorithm dynamically chooses the model, which can change during
the DSE process, with the goal of finding the model that best guides the search for the Pareto front.
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Fig. 7. Performance of ϵ-PAL, ATNE with four models, Flash, TED, and five versions of Sherlock across the

individual benchmarks. We compute the area under the ADRS curve as a measure of convergence over

the first 30% of design space sampled. A lower value means that the algorithm reaches a better estima-

tion of the Pareto front faster. The Sherlock results include four versions using different regression models:

Gaussian process (GP), random forest (RF), and two RBFs—multiquadric and thin plate. Model selection is

a version of Sherlock that uses Algorithm 3 to dynamically switch between those four different models with

the goal of automatically adapting to the best model. ATNE also uses four models: decision tree, random

forest, RBF with a thin plate basis, and RBF with a multiquadric basis. ATNE with a decision tree model is

the original implementation.

In theory, the model selection results should be equal to or superior than the best results of the
Sherlock fixed model. This is clearly not the case, as the Model selection results are inferior to
one or more the Sherlock fixed models in most of the benchmarks. For example, in the Histogram
benchmark, Sherlock RBF multiquadric and Sherlock RBF thin plate both give better performance
than Sherlock with Model selection. This indicates that the model selection process is not perfect
(i.e., a good model selection algorithm should statically pick only one model if that would give the
best results). Thus, an ideal model selection algorithm would have just picked the RBF multiquadric
for the entire duration. Clearly, this is not what happened. However, model selection can provide
superior results; model selection performs better than all the Sherlock fixed models in merge sort.
And on average, model selection works very well as we discuss in the following.

Figure 8 shows the average AUC over all benchmarks. A smaller AUC represents a faster conver-
gence of the algorithm toward the true Pareto front. The best-performing static model on average
(RBF with a thin plate kernel) produces an AUC 1.7× smaller than Flash, 2.7× smaller than ATNE,
4.5× smaller than TED, and 5× smaller than ϵ-PAL. However, the performance of each model varies
with individual benchmarks. Although we could reasonably pick the model with the best average
result, we would ideally allow Sherlock to decide the best surrogate model.

In many cases, the performance of Sherlock with model selection is comparable to Sherlock with
the RBF interpolator, and better in some cases. On average, this algorithm performs better than the
other solutions without having to choose a particular model. The AUC is about 2× smaller than
Flash, 3× smaller than ATNE, and 6× smaller than ϵ-PAL. The Gaussian process and random forest
implementations of Sherlock do not converge very well in many benchmarks as a result of being
stuck in local minimum regions. The model selection process can more easily avoid these local
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Fig. 8. Average AUC for the benchmarks presented in Figure 7. We present the arithmetic mean and the geo-

metric mean to take into account the variability of the results. The values are scaled by 1,000 for readability.

minima by selecting a different model. Certain models such as FIR filter contain a local minimum
that creates a high variance in the performance of different models, and the selection process
clearly helps in this case. Conversely, a benchmark like SPMV 0.5% depends more on the learning
rate of the chosen model, and the overhead of choosing between multiple models is more obvious.

Figure 9 shows the ADRS curves for all of the benchmarks and all of the algorithms. These are
the most complete results that have been summarized previously using average ADRS (Figure 6)
and AUC (Figures 7 and 8). The results provide some more information about the variability of the
performance of different DSE algorithms on the different designs. Rarely does one model dominate
across an entire design sample size; some models work better in the lower sample regime, whereas
other models do better with more samples.

Based on the results presented, Sherlock is able to provide similar and often better results com-
pared to similar frameworks. Paired with its model selection feature, Sherlock is able adapt itself
well to a previously unknown design space. Although model selection generally performs com-
petitively, it is possible to choose a model that fits the space better than Sherlock’s general model
selection. This indicates that model selection is important. Sherlock does a good job of model
selection, but it could certainly be improved.

3.4 Execution Time

We collected the execution time of each of the DSE algorithms on every dataset. These times are
plotted in Figure 10. These algorithms were collected on an AMD Ryzen 2700 with 16 GB of RAM
and an Nvidia 1060 with 6 GB of VRAM on a system running Ubuntu 20.04 LTS. Additionally,
we estimate the time to evaluate a sample design (i.e., perform a complete synthesis). The exact
synthesis times per design are not available for the Spector benchmarks. We assume that each
sample takes an average of 2 hours to generate, which was the average time cited in the Spector
benchmarks [7]. In general, sample generation time may vary greatly and be difficult to predict.
Regardless, sample evaluation dominates the overall time for DSE.

Sherlock is generally among the lowest when it comes to total execution time. This is largely
due to Sherlock’s ability to quickly converge to the Pareto front, leading to a reduced number of
samples required to be evaluated, as shown in Figure 9.

4 RELATED WORK

FPGA HLS tools allow designers to explore vastly different architectures using built-in optimiza-
tions including pipelining, memory optimization, and bitwidth optimizations [9]. Efficiently ex-
ploring the design space is important since FPGA HLS is a time-consuming and costly process. DSE
techniques enable the designer to specify potential optimization options and determine the best
specifications that produce the most optimal architectures. DSE facilitates faster and more effective
architectural optimizations and reaching optimal solutions more quickly than a manual search.

Sherlock targets DSE problems where the evaluation of any individual sample is a computer-
intensive and time-consuming process (on the order of hours or more). For example, compiling
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Fig. 9. Comparison of the ADRS curves for multiple algorithms on all FPGA benchmarks.

an HLS design to bitstream can easily take hours primarily due to a physical synthesis process.
In these DSE scenarios, limiting the number of synthesis runs is very important, as each single
design not sampled can save hours of optimization time. In such scenarios, one cannot perform a
brute force exploration of the entire space, and they are limited to evaluating only a small number
of samples.

Many strategies exist to effectively explore design spaces to find the optimal set of design param-
eters [21, 25]. We describe those that are most relevant to our work with respect to the type of DSE
problem that they attempt to solve and the strategies that they employ to perform the exploration
process.

Evaluation-based methods measure the exact quantity of the target objectives to optimize. In
hardware design, this method consists of compiling an architecture specification to the target
system, running the compiled design using an application-specific dataset, and measuring the
throughput, area utilization, power consumption, and other optimization goals. These measure-
ments give an accurate representation of how the design actually performs at the cost of long
synthesis times. One solution to accelerate this evaluation process is to parallelize it and employ
a smart division of the space to attribute the computing resources. Xu et al. [32] use an MAB algo-
rithm to balance the computing resources between different portions of the space and leverages
the exploration-exploitation tradeoff of MAB to iteratively allocate more resources to the optimal
subspaces.
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Fig. 10. Comparison of the execution time for multiple algorithms on all FPGA benchmarks. Sample gener-

ation is estimated at an average of 2 hours per sample [7].

Predictive DSE methods develop an analytical model for the design space, which allows for faster
and more comprehensive sampling by using this approximated model. This enables the rapid ex-
ploration of the design space by sampling more potential solutions. DeSpErate++ [11] uses a sched-
uling system to predict and efficiently simulate the designs and quickly explores the design space
of the analytical model. Another approach builds compute and memory models based on the com-
piler internal representation that can be used as surrogate models to significantly speed up the
DSE process [30, 31]. Their performance prediction error varies between 4% and 16%. Schafer [22]
explores the design space by building a probabilistic model for each type of optimization. He per-
forms a fast exploration by using an ant colony optimization algorithm and obtains an error of 1.7%
on SystemC benchmarks. Lin-Analyzer [35] and MPSeeker [36] propose tools to analyze the struc-
ture of the HLS code directly before the synthesizing steps occur. Their model achieves a 400 to
4,000× speedup and a final accuracy of 95%. Generally, predictive-based methods exploit features
specific to the optimized application. These specific features make predictive approaches difficult
to generalize to other applications. Sherlock learns the appropriate model for the application at
hand, which allows it to generalize better than these predictive approaches that rely on application-
specific features.

Metaheuristics are commonly used as a general optimization framework for DSE. Simulated
annealing is a probabilistic technique for approximating a function that naturally lends itself to
assumption-free modeling of a design space [6, 24, 26]. Evolutionary DSE [1, 5, 15, 20] uses genetic
algorithms to converge toward an optimal solution. Particle swarm optimization [14, 18] generates
a population of particles searching the space of designs and using various metrics to advance
toward the optimal solutions. These techniques require a large number of samples to converge,
and therefore are more adapted to problems where the evaluation of each sample is a fast process,
but the space is too large to be evaluated entirely, which usually does not apply to FPGA HLS.

Iterative machine learning algorithms aim to minimizes the number of designs to evaluate while
maximizing the quality of the DSE model. Liu and Carloni [10] describe an iterative approach based
on TED, randomized selection, and random forests. ATNE is an active learning framework based
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on non-Pareto elimination [13]. ATNE creates multiple regression models that estimate the de-
sign space from different subsets of the known data, then computes an elimination threshold from
the variance of the predictions. Based on this threshold, designs predicted to be dominated are
eliminated from consideration. The algorithm then samples a new design and iterates until con-
vergence. By focusing on estimating only the Pareto-optimal designs, ATNE can quickly converge
toward the Pareto front. The Hypermapper framework [2, 17] performs active learning by mod-
eling known designs with a random forest regression algorithm and simultaneously sampling all
predicted Pareto-optimal solutions. The algorithm iterates until a sampling budget is reached. This
framework is optimized toward large design spaces where it is reasonable to perform a high num-
ber of design evaluations (100 to 300 samples per iteration). Their framework is applied to the opti-
mization of Simultaneous Localization And Mapping (SLAM) algorithms. ϵ-Pareto Active Learning
(ϵ-PAL) [37] is an improvement over PAL [38] and uses a Gaussian process as a regression model
to predict an uncertainty region for each predicted design output. By using these uncertainty re-
gions, the algorithm can discard non-optimal designs with high accuracy and progressively build
a predicted Pareto-optimal set with an ϵ margin. The sampling process is based on minimizing
the uncertainty of the predictions. Sherlock is similar to ϵ-PAL and ATNE, but without the prun-
ing step, which can potentially eliminate optimal designs from consideration, especially when the
regression model is not adapted to the design space being searched.

Flash [16] is a method to explore the space of possible configurations for software systems. Flash
is a sequential model-based optimization that uses decision trees to iteratively sample configura-
tions. It uses the information from prior selected samples to inform the best future samples. Our
results show that Sherlock performs better than Flash in most cases.

Sherlock aims to address the issue that one model cannot adequately address all design spaces.
SPIRIT [33] determines the Pareto front using iterative refinement while employing spectral anal-
ysis to determine uncertainty in the design space model. They study six different response surface
models. They note that different models provide different benefits and decide on RBF because it
is generally best at modeling their DSE problem. Although our results agree that RBF is a good
model on average (see Figure 6), we show that different design spaces are modeled better by dif-
ferent models (see Figure 8), which indicates that statically determining a model is not an optimal
solution. Sherlock adaptively chooses the best model based on the design space and will likely be
able to better model designs spaces that RBF does not model accurately.

OpenTuner [1] develops an MAB-based technique to choose which search algorithm should be
used to select samples. Sherlock uses a similar technique, tailored to our active learning search
algorithm, that can choose which regression model performs better on each design space.

Prospector [12] uses Bayesian optimization that builds a probabilistic model of the design space
and iteratively determines the best points to sample. Prospector’s Bayesian Optimization Unit
uses a squared exponential kernel as a Gaussian process to create a model of the design space.
Sherlock uses a Gaussian process as one of its models. The results when Sherlock uses the Gaussian
process do not perform as well as other models on average, although it does perform very well on
some benchmarks. Prospector uses PESMO to select the sample points with the goal of reducing
the entropy of the Pareto front. PESMO focuses on exploration at the beginning of the process
and exploitation near the end. Sherlock changes its focus between exploration and exploitation
dynamically depending on the progress of the DSE search.

5 CONCLUSION

We presented Sherlock—an evaluation-based, multi-objective, DSE framework. Sherlock is an ac-
tive learning algorithm, heavily focused on improving the set of optimal designs at each iteration,
and as such it converges very quickly toward a low-error solution. Sherlock is capable of using
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specific models if a similar space is known, but Sherlock excels in scenarios where the design
space is not already known by providing an intelligent way to select a model to represent the
space by using its MAB-based algorithm. We have tested our framework with multiple regression
models that present a wide variance in the quality of results on different benchmarks. In general,
we have found that simple RBF interpolation functions perform better than traditional random
forest or Gaussian process models on FPGA design spaces. The results of this model selection are
consistent over multiple benchmarks and provide better average performance.
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